\qquad

Below is a table to record the birth weight and birth month of a person. You will need to have the birth weight and birth month of 15 people. Birth weight is measured ounces (oz). For the birth month you will be using a number. For example, January is 1, February is 2, March is 3, and so on and so forth. Each x-value and y-value is an ordered pair. For example, a birth weight of 115 oz and a birth month of November would be $(115,11)$ as an ordered pair. Graph the 15 ordered pairs you gathered as data on the grid provided. Make sure you label the x-axis and the y-axis.

	x Birth Month	Birth Weight (oz)
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
2		

Label:

Label: \qquad

What relationship does there appear to be between the birth weight and birth month?

More Practice - Scatterplots

Accelerated $7^{\text {th }}$ Grade Math
The table below represents the relationship between the number of minutes a player played in a basketball game and the number of points that they scored.

1. Label each axis.
2. Scale the Graph.
3. Draw the line of best fit.
4. Write an equation for your line of best fit.

\mathbf{X} Time	\mathbf{Y} \# of points
37	22
0	0
10	4
6	2
32	10
15	4
34	15
20	4
4	1
33	8
30	9
16	3

Label:

Slope:
y-intercept:
Equation:

