Test Review: Probability

Percent

1. Fill in the table below...

Fraction	Decimal	Percent
2/3		
	0.84	
		26%
2/9		
		5%
	0.5	
		25%

2. What is the difference between theoretical and experimental probability?

Fraction

3. Consider the situation below...

You roll a fair six sided die 20 times. Your results are found in the table below...

a. Find the **theoretical** probability of rolling the #5.

Dice #	Frequency
#1	2
#2	6
#3	5
#4	1
#5	3
#6	3

b. Find the **experimental** probability of rolling the #5.

Fraction Decimal Percent

c. Find the **theoretical** probability of rolling an odd number.

<u>Fraction</u> <u>Decimal</u> <u>Percent</u>

d. Find the **experimental** probability of rolling an odd number.

<u>Fraction</u> <u>Decimal</u> <u>Percent</u>

Decimal

e. Find the **theoretical** probability of rolling the #7.

<u>Fraction</u> <u>Decimal</u> <u>Percent</u>

f. Find the **experimental** probability of rolling the #7.

<u>Fraction</u> <u>Decimal</u> <u>Percent</u>

4.	party.	It can be on	wins and they a Friday, Saturda n eat pizza, bui	ay, or Sunday.	They can eit	what to do for t her swim, watcl	heir birthday n movies, or play
	a.	Draw a tree	diagram to s	how all of the	possible party	combinations.	
			•				
		,					
							. •

- b. Use the **basic counting principle** to determine the total number of different party combinations.
- c. If they choose randomly from each category, what is the probability that they will choose to eat tacos?
- 5. In a new board game, players have to roll a fair, six sided die and flip a coin.
 - a. Draw a tree diagram to illustrate the total number of combinations that can occur.

b.	Use the basic counting principle to determine the total number of outcomes.
C.	What is the probability that a player will roll the #1 and flip tails in the same turn?
d.	What is the probability that a player will roll an even number and flip heads in the same turn?
6. Explai	in the difference between independent and dependent events.
7. State	if the following are examples of independent or dependent events:
a. In	roll a fair six sided die, then I flip a coin 2 times.
b. I p	pull a test from a pile, then I pull another (without replacing).
c. I s	spin a spinner 3 times.
d. I į	pull a test from a pile, replace it, then pull another test.
e. I	hand out candy from my drawer one at a time for students to eat.
8. On th	ne last test, there were 3 A's, 6 B's, 3 C's, 2 D's, and 2 F's. If I grab one test at random, is the probability I will grab an A or B?

 A container initially contains 18 titles for a game of charades: 8 movie titles, 3 book titles, 4 TV shows, and 3 plays. Titles are <u>not replaced</u> once used.
a. Is this an example of independent or dependent events? Explain.
b. What is the probability that Susan draws a book title, Ted draws a movie title, and Ann randomly selects a movie title in that order?
10. The bag of assorted granola bars that Jeanne bought came with 3 chocolate chip, 3 peanut butter, 2 coconut, and 2 fruit bars.
a. What is the probability that she eats 2 chocolate chip, then 2 peanut butter bars if they are chosen at random? Show your work.
b. Is this an example of independent or dependent probability? Explain.
11.Luke's math teacher writes a number from 1 to 10 in a notebook. She then asks students to guess the number.
a. If Luke has guessed the number correctly three times in a row, what is the probability he will guess the correct number the next time?
b. Is this an example of independent or dependent probability? Explain.
12. If I flip a coin 6 times, find the probability that they all will land on heads.

ŧ

a. draw a tree diagram.

b. What is the probability that the sum of the numbers is 5?

19. What is the probability of pulling a red Starburst in a jar that contains the following colors: 4 pink and 7 yellow.

Circle the likelihood of the situation above occurring. not possible unlikely

even chance

likely

certain

20. What is the probability of landing on a star.

Circle the likelihood of the situation above occurring. not possible unlikely

even chance

likely

certain

Answers:

- .67, 67% 1) 21/25, 84% 13/50, .26 .22, 22% 1/20, .05 1/2, 50% 1/4, .25
- 3) a. 1/6, .17, 17% b. 3/20, .15, 15% c. ½, .5, 50% d. ½, .5, 50% e. 0, 0, 0 f. 0, 0, 0
- b. 27 4) c. 1/3 = 33%
- 5) b. 12 c. 1/12 = 8% $d. \frac{1}{4} = 25\%$
- I, D, I, I, D 7)
- 8) 9/16 = 56%

- 9) a. D b. 7/204 = 3.4%
- a. 1/140 = 0.7%10) b. D
- a. 1/10 = 10%11) b. I
- 1/64 = 1.6%12)
- 13) 1/36 = 2.8%
- 3/128 = 2.3%14)
- 7/44 = 16% 15)
- 1/280 = 0.36%16)
- b. 1/8 = 13%17) c. 3/8 = 38%
- 1/12 = 8%18)
- 19) Probability: 0 Likelihood: Not Possible
- 20) Probability: 1 Likelihood: Certain

·			
		•	