REVפEW: 3D Geometry

Aecelerated $7^{\text {th }}$ Grade Math

Draw the following 3-D shapes

1) pentagonal pyramid
2) triangular prism

Name the following figures
3)

4)

5)

6)

For \#7-15, find the surface area AND volume of the following shapes. Show all of your work and include units with your answer!

8)

9)

10)

12)

14)

15)

16) Farmer Jones is going to buy a water tank. Find how much water it will hold if it is a rectangular prism with a height of 10 feet, a length of 4 feet, and a width of 7 feet.
17) You are going to wrap the following box with pretty pink paper. How much paper will you need?

Find the surface area and volume for \#18-19.

13 m
20) A can of soup has a surface area of $125 \mathrm{in}^{2}$ and a volume of $240 \mathrm{in}^{3}$. They sell another can that is 4 times larger in every dimension. Find the surface area and volume of the larger can. SHOW WORK!
21) The surface area of the smaller box is $400 \mathrm{in}^{2}$ and the volume of the smaller box is $650 \mathrm{in}^{3}$. Find the surface area and volume of the larger box. SHOW WORK! (The prisms are similar)

1.

2.

3. Hexagonal pyramid
4. Octagonal prism
5. Decagonal Pyramid
6. Heptagonal prism
7. $\mathrm{SA}=5664 \mathrm{~cm}^{2} \quad \mathrm{~V}=21,600 \mathrm{~cm}^{3}$
8. $\mathrm{SA}=953.5 \mathrm{~cm}^{2} \quad \mathrm{~V}=1250 \mathrm{~cm}^{3}$
9. $S A=176.4 \mathrm{~cm}^{2} \quad V=98 \mathrm{~cm}^{3}$
10. $S A=671.65 \mathrm{~cm}^{2} \quad V=1509.9 \mathrm{~cm}^{3}$
11. $S A=975.04 \mathrm{ft}^{2} \quad V=1792 \mathrm{ft}^{3}$
12. $S A=1512 \mathrm{in}^{2} \quad V=2556 \mathrm{in}^{3}$
13. $S A=226.08 \mathrm{~cm}^{2} \quad V=254.34 \mathrm{~cm}^{3}$
14. $S A=418.41 \mathrm{ft}^{2} \quad V=548.35 \mathrm{ft}^{3}$
15. $\mathrm{SA}=200.96 \mathrm{ft}^{2} \quad \mathrm{~V}=267.95 \mathrm{ft}^{3}$
16. $280 \mathrm{ft}^{3}$
17. $257.5 \mathrm{in}^{2}$
18. $\mathrm{SA}=720.28 \mathrm{~m}^{2} \quad \mathrm{~V}=1089 \mathrm{~m}^{3}$
19. $S A=570.33 \mathrm{~m}^{2} \quad V=545.155 \mathrm{~m}^{3}$
20. $S A=2000 \mathrm{in}^{2} \quad V=15,360 \mathrm{in}^{3}$
21. $S A=14,400 \mathrm{~cm}^{2} \quad V=140,400 \mathrm{~cm}^{3}$

